
A exible front-end for a pascal compiler

Willem Jan Withagen

Eindhoven University of Technology

February 24, 1993, Version: 1.1

Email: wjw@eb.ele.tue.nl

February 24, 1993

Contents

1 Introduction 3

1.1 Pascal : 5

1.2 GMD Cocktail compiler tools : 5

1.3 Notational conventions : 6

1.4 Source : 6

2 Scanner 8

2.1 Identi�ers : 8

2.2 Comments : 8

2.2.1 Options : 9

2.3 Errors : 9

2.4 Ignored characters : 9

3 Parser and Abstract Tree generation 10

3.1 The concrete grammar : 10

3.2 Abstract grammar : 10

3.2.1 Expressions : 13

3.3 Building the Abstract Tree : 13

3.3.1 Modi�cation of VarList : 14

3.3.2 Routines : 15

3.3.3 Character or string constant : 16

3.3.4 Appending to already existing lists : 16

3.3.5 Other attributes used. : 17

4 Semantic evaluation 18

4.1 Attribute evaluation : 18

4.1.1 A simple example of an attribute : 19

4.1.2 What is the order of evaluation? : 20

4.2 Symbol table and type management : 20

4.3 Scoping : 22

4.3.1 Attributes used for scoping : 24

4.4 Declarations : 27

4.4.1 Labels : 27

4.4.2 Constants : 27

4.4.3 Types : 27

4.4.4 Variables : 32

1

document : pascal.tex, Version: 1.1, state: Draft 2

4.5 Routines : 33

4.5.1 Formal and actual parameters : 33

4.5.2 Function return types : 35

4.6 Expressions : 36

4.7 Statements : 37

4.8 Semantic checks : 37

4.9 Changing the order of evaluation : 37

5 Symbol table evaluations 39

5.1 Crossreferencing : 39

5.2 storage allocation : 39

A Omissions and/or bugs 43

A.1 Bugs : 43

B Extensions 44

B.1 Comments : 44

B.2 Symbols : 44

B.3 Grammar : 45

B.3.1 Declarations : 45

B.3.2 EXTERNAL routines : 45

B.3.3 CASE defaults : 45

B.4 Semantic tolerance : 45

B.4.1 The order of declarations : 45

B.5 identi�ers and routines : 46

B.6 Making more extensions : 46

B.6.1 to the scanner : 46

B.6.2 to the parser : 47

B.6.3 to the semantic evaluation : 47

B.6.4 to the set of prede�ned names : 47

C Sources 49

C.1 Cocktail sources : 49

C.2 additional sources : 50

C.2.1 extra modules : 50

C.2.2 small programs : 50

D Language de�nitions 51

D.1 Reserved words : 51

D.2 Required identi�ers : 51

D.3 Grammars : 52

D.3.1 Concrete grammar : 52

D.3.2 Abstract grammar : 56

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

Chapter 1

Introduction

As part of a larger research program to investigate the performance analyses and performance

prediction of processor architectures, there is a need for a (set of) compiler(s) which have a

very open design.

Simulation tools

AWB stack simulator

Software achitecture

Detailed simulator

VHDL, IDaSS, ...

simulator

Level 0

Level 1

Level 2

AWB tools

Targetted compiler

Optimised compiler

Compilation tools

Figure 1.1: Visualisation of the design hierarchy

In this research program, processors are modeled at three levels of architecture. (See �-

gure 1) The compiler requirements become more complex with increasing detail of description.

This calls for a layered approach where modules at di�erent layer of the compiler architec-

ture can easily be replaced by di�erent modules, without a�ecting the functioning of the

other components. The design as displayed in �gure 1.2 shows the traditional elements of a

compiler:

� Front-end (Scanner/Parser and Semantic Evaluation).

3

document : pascal.tex, Version: 1.1, state: Draft 4

Figure 1.2: General architecture of a compiler

The source text is read, and transformed into an internal representation. This repre-

sentation is checked for semantic correctness.

� Optimizer (general and Language dependant)

Optimization is separated into two parts. The �rst part transforms the Abstract Syntax

Tree (AST) into another, called HIT

1

, removing all superuous information which was

only required for semantical analysis. Since this is mostly language dependant, it can

be part of the front-end.

Also on this level are those optimisations which are language dependant. The most

obvious example here would be pointer optimsation for Pascal. This is totally di�erent

from pointer optimisationin "C", since Pascaldoes not allow pointer aliassing other than

by other pointers.

Then this tree is transformed into a universal format which is shared by several compiler

front-ends. The generic optimization are performed on the Intermediate description

(PIL), possibly inuenced by the type of the source language and the architecture to

compile for.

The reason for this two level seperation is the mere fact that certain optimisation are

easier performed on trees, where others are beter suited for implementation on a lower

level. THe HIT still keeps the structures which are part of the source language, where

as in the PIL description most of this type of information is lost.

� Code generation or back-end.

1

Higher Intermediate Tree, as opposed to PIL. (Primitive Intermediate Language)

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 5

PIL is the format used by the code generator to derive the actual code from. The

back-end can also include optimizing phases, most common is a peephole optimizer.

But other architecture dependant optimizations should occur here. They are in the

back-end, since they are di�erent for each and every new architecture.

This design allows the construction of a compiler which consists of a set of modules

transform trees within their own tree language (optimizers), connected by modules which

transform from one tree type to another tree type.

The �rst working version of the compilers will not include the higher intermediate tree

(HIT) description, but the (modi�ed) abstract syntax tree (AST) is directly used for code

generation. And thus is a �rst transform from AST to PIL made, which is then translated

into actual code.

1.1 Pascal

In this technical report the design and internals of the Pascal front-end are described. It is

not intended as another manual on the usage of the language.

As reference for the design of the compiler two reference are used: the standard[1] and a

reference work by the primary designers of Pascal[11].

The standard is used as primary source of de�nitions and descriptions. References to this

work are not in the usual citations format, but they also include a section number where

certain information can be found. (eg. Standard[1.1]) The Pascal User Manual[11] is used to

get a clearer interpretation of the text in the standard.

Over the years Pascal has developed a whole series of cousins (dialects) which are exten-

sions to the original language. The di�erences are mainly due to the poor I/O-capabilities the

standard language has. It is the intention to support several of the more common extensions

to the language. In this report, the extensions are described in the appendices. The detailed

description of the implementation of the extensions is usually in the module description in

the source.

1.2 GMD Cocktail compiler tools

The GMD Cocktail compiler tools[3] are used as the backbone for the generation of the

compiler parts. For a full description of the tools, readers are referred to a large number of

references. [2, 5, 7, 6, 10, 4, 8, 9, ?]

Also was the generation of the Pascal front-end used as a vehicle to gain experience in the

usage of the versatile but complex set of tools.

One of the strong points of Cocktail is that there are tools available for all layers

of a compiler. This gives the programmer the possibility to express his actions in a more

natural way. And that the interfacing between the layers can be speci�ed with the aid of tree

grammars. Thus helping in reducing the amount and complexity of the code written in the

target language ("C").

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 6

1.3 Notational conventions

All the grammars are written, using the tree grammars used in the Cocktail-tools. Check

[7] where the grammar for the tree grammars is speci�ed.

But here is the short version (only the rule part):

Rules = <

NoRule = .

Nonterminal = Rules Name '=' AttrDecls Extensions '.' .

Terminal = Rules Name ':' AttrDecls Extensions '.' .

>.

Extensions = <

= .

= '<' Rules '>'

>.

AttrDecls = <

= .

ChildSelct = AttrDecls Name ':' Name .

ChildNoSelct = AttrDecls ':' Name .

AttrTyped = AttrDecls '[' Name ':' Name ']'.

AttrInteger = AttrDecls '[' Name ']'.

Arrow = AttrDecls '->'

>.

An example of a simple rule is:

If = 'if' Expr: Expression 'then' Then:Stat 'else' Else:Stat .

Here Expr:, Then: and Else: function as selectors for the nonterminals Expression and

Stat. The elements in '' are considered terminals if they do not appear on the left size of

any rule.

A more complex example is:

Expr = Next: Expr [IsConst :boolean] <

Bin = Lop: Expr Rop: Expr [Operator :int] .

Unary = Expr [Operator] .

RealConst = [Value :float] -> [InRange :boolean].

>.

Which shows the base rule Expr and several extensions. (Bin, Unary, RealConst) Note that

each of the extensions is a nonterminal which can be used again in any other right hand side.

With the rules are several attributes: All rules have an attribute IsConst and Next because

the attributes and children of the base node are distributed to the extensions. The Unary

rule shows the use of the default type int. The -> [InRange] for RealConst indicates that

the value for this attribute is only calculated after the node for this rule has been created.

1.4 Source

The sources of the Pascal frontend are publicly available to people connected to the internet.

Using anonymous FTP, the sources can be found at:

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 7

ftp.eb.ele.tue.nl in /pub/src/pascal/frontend.zoo

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

Chapter 2

Scanner

The larger part of the scanner de�nition, the reserved words, are extracted automaticaly

from the de�nition of the concrete grammar. Most of the remainder of the scanner follows a

standard approach in the implementation. The additional code in the scanner is to process:

� numbers (integer and oating point)

� strings

� comments

� options in comments

� identi�ers

The scanner also recognizes the lexical alternatives as indicated in Standard[6.1.9].

2.1 Identi�ers

Identi�ers (Standard[6.1.3]) consist of a string of characters of any length containing letters

and digits, where the �rst character has to be a letter.

The extension to the identi�ers allows and $ to be part of the identi�ers. But when they

are used as �rst character, a second one has to follow, which has to be a letter. (Eg. a and

$a are valid identi�ers, where as , $, 1 or $1 are not.)

Note: In near future it could be that hexadecimal constants are introduced as integer con-

stants. When using the TurboPascal de�nition for this, it could generate a \conict" between

identi�ers and constants. (Eg. $abs is an identi�er, where $abc would be an integer con-

stant.) The scanner will be able to resolve this, but the text will not become any clearer when

the programmer uses this.

Al list of reserved words is included in the apendices.(see D.1

2.2 Comments

The Standard[6.1.9] matches a comment opening f with a close *), and vice versa. Since it

is a very common case to use the fg to out-comment parts of the program which use (**)

8

document : pascal.tex, Version: 1.1, state: Draft 9

as regular comments, this policy is adopted in the scanner. However, comments cannot be

nested, other than f(**)g or (*fg*).

2.2.1 Options

Although the contents of comments are not supposed to inuence the program, they are used

to pass certain options to the internals of the compiler. Very often they (re)set switches to

modify some compilation properties.

2.3 Errors

Few errors can be detected in the scanner. Most common are the invalid characters. Each

occurrence is reported separately. One possible cause for invalid characters lies in the trans-

portation of sources for systems which use di�erent line terminators. For one explicit case

(MS-DOS), the extra invalid characters are accepted and transformed into spaces. Line-feeds

are also accepted.

One other type of error which can be caught is the open ended string. When a string

contains a NL-character then the string is considered unterminated.

2.4 Ignored characters

To be able to use this frontend in several environments, as few constraints as possible are

enforced. Thus the following characters are ignored: <LF>,<FF>,<VT>, <SUB>

1

1

The values of these codes follow the ASCII character set.

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

Chapter 3

Parser and Abstract Tree

generation

The parser has two objectives:

1. veri�cation that the input conforms with the context-free grammar of Pascal.

2. transform the input into an abstract grammar tree (AST).

3.1 The concrete grammar

The context-free or concrete grammar (in short CG) is extracted from the grammar as spe-

ci�ed in the Standard[Appendix A], and as such does it accept the "Level 1" de�nition of the

ISO-standard. However, correct processing of the Conformant array is only limited to the

parser, it is not processed any further.

The grammar is speci�ed in a right recursive manner to �t the needs of LALR-tools. The

concrete grammar can be subdivided in several major parts: Declarations, statements and

expressions. And although the tools actually allow one to specify the grammar in a very

compact and concise way, chain-rules are rarely used.

It contains 4 terminal symbols which have attributes in which the values from the scan-

ner are stored: IDENTIFIER, UNSIGNED INT, UNSIGNED REAL and STRING. Another attribute

accepted from the scanner is [Position], indicating the location of textual counterpart in

the source �le.

3.2 Abstract grammar

The abstract grammar (AG for short) listed in appendix D.3.2) has a clear relation to the

concrete grammar. Its purpose is to give an accurate representation of the source, without the

additional syntactic sugar of the concrete grammar. The purpose of the parser is to accept or

refuse the input source, with regards to the context-free grammar. After this, the context-free

grammar is no longer required.

The abstract grammar can again be subdivided into three major parts:

� Scoping and declarations.

10

document : pascal.tex, Version: 1.1, state: Draft 11

� Statements.

� Expressions.

Where possible the terminal symbols are either enclosed in '', in capitals or both. And

although the tools allow the designer to make heavy use of chaining rules, these are rarely

used.

During the design of the abstract grammar a careful balance has to be struck between

a short, compact and (but too) generic grammar and a grammar which has (too) many

language elements for similar cases. In the compact grammar case will it require extra code

to di�erentiate between almost equal cases, where in the second case the abstract grammar

must have identical code for the elements which are similar. Two examples will try to show

the problem.

The CG contains several rules to match procedure and functions declarations in all their

manifestations(actual, forward or external), but they are all mapped onto only one rule in

the AG which is annotated with several attributes to indicate what instance is represented.

The CG is:

proc_dcl_part = <

procedure_dcl = proc_head body .

function_dcl = func_head body .

>.

proc_head = proc_heading ';'.

proc_heading = 'PROCEDURE' IDENTIFIER formal_params .

func_head = func_heading ';'.

func_heading = 'FUNCTION' IDENTIFIER function_form .

function_form = <

function_form1 = .

function_form2 = formal_params ':' IDENTIFIER .

>.

body = <

body1 = block .

body2 = 'FORWARD'.

body3 = 'EXTERNAL'.

>.

And in the AG everything collapses into one rule:

Decls = <

Proc = [ProcType :tProcType]

Formals

PrimType

Scopes .

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 12

>.

Here ProcType indicates whether the routine is a procedure or a function, and if it is a forward,

external or actual de�nition. This gives that advantage that there is little duplicated code,

for the semantic processing of routines.

Another example shows a simple construction in the CG, but for which the AG requires

very di�erent actions.

ident_list = <

moreidents = ident_list ',' IDENTIFIER .

oneident = IDENTIFIER .

>.

These rules are used in several places in the CG Since lists with names are required in

many place in the CG, these rules are used in several places. It is only during semantic

analyses that di�erent identi�er-lists get di�erent meanings.

It is very cumbersome to translate ident list into the equivalent in AG and then dif-

ferentiate with an attribute (one like the ProcType in the routine equivalent) for various

di�erent parts of code, because it would create to much complex code.

Instead the ident list trees are transformed into the appropriate AG trees once they

are parsed. And although the AG rules look very similar, the semantic code which goes with

each of the rules is very di�erent. And thus can the semantic evaluator apply the appropriate

code the the various instances of the ident list.

Elements in AG which use lists are:

Decls = <

Var = VarList Type .

Proc = [ProcType :tProcType]

Formals

PrimType

Scopes .

>.

Type = <

Enumeration = EnumIds .

>.

Formals = <

NoFormal = .

Formal = Formals

[IsVar :Boolean]

ParIds Type .

>.

ParIds = <

NoParId = .

ParId = [Ident :tIdent] [Position :tPosition]

ParIds .

>.

VarList = <

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 13

NoVar = .

VarId = [Ident :tIdent] [Position :tPosition]

VarList .

>.

EnumIds = <

NoEnumId = .

EnumId = [Ident :tIdent] [Position :tPosition]

EnumIds .

>.

3.2.1 Expressions

The parser is capable of processing a grammar with a general set of expressions and a list

of operators with �xed priorities . Using this would reduce the grammar with a reasonable

amount of rules. This possibility is not used since it would remove the strong congruence

with the grammar as speci�ed in the standard.

3.3 Building the Abstract Tree

As already mentioned in a previous section, is the input text veri�ed against the concrete

syntax, and while parsing the input a corresponding Abstract Syntax Tree (in short AST) is

build.

Figure 3.1: Tree construction of a code piece

The actions to be executed upon completion of a concrete syntax rule is usually the

creation of a AST-node, which is used to represent part of the language construct in the

AST. Except for a few rules are the actions the creation of a node which is comparable to the

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 14

concrete syntax construct. The resulting node is then passed onto the parenting grammar

rule which uses it to incorporate it in the node it is going to construct in it turn. For this

purpose all concrete grammar rules have an attribute [Tree :tTree], used to propagate the

links to subtrees.

Example:

while I > 0

do I := I - 1

NIL-pointers Note that by speci�cation in the abstract grammar all edges in a AST are

pointing to existent items. Eg. list terminations are created by rules with empty right hand

sides, and thus actual (leaf) nodes in the AST. For example, NoVar terminates the VarList:

VarList = <

NoVar = .

VarId = [Ident :tIdent] [Position :tPosition]

VarList .

>.

As a consequence of this, no NIL-pointers can occur in the AST. This motto will be used

during the remainder of the design of the program. It will allow very rigorous testing of

pointers: Any NIL-pointer in the AST is an invalid one. A VarList would look like:

Var VarId VarId

Object link

ScopeDecl link

LocDecl link

Env link

NoVarId

TypeCurrent Env

Figure 3.2: The AST for a VarList

3.3.1 Modi�cation of VarList

As was described in a previous section(3.2, is the ident list construction used at several

places. And not at every of those places should the list be constructed using VarList nodes.

Therefor, three routines 'translate' VarList lists to other types of lists. (EnumIds, FielsIds,

ParIds)

1

1

Code for small jobs like this are easily programmed in Puma.

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 15

The transformations are only invoked once the whole VarList is complete. This is done

at the instance where the list is passed on to parent rules.

3.3.2 Routines

Due to the fact that the rules for the routines are not written as chained rules, but are split

in several parts, is it necessary to propagate the information generated in the 'sub'-rules to

the rules where the actual routine node is generated.

As is shown in the following example where the attributes for the name, position, formal

parameters, result type and declaration type are constructed and passed on to the parent rule

(function dcl). Here the information is combined and procedure node is created one node:

(mProc()).

function_dcl = /* func_head body ';' . */

{

Tree := {

switch(body:DeclType) {

case DeclActual\: Tree = mProc(

NoTree, func_head:FuncName, func_head:FuncPos, FuncActual

, func_head:Formals, func_head:TypeName, body:Tree);

break;

case DeclForward\: Tree = mProc(

NoTree, func_head:FuncName, func_head:FuncPos, FuncForward

, func_head:Formals, func_head:TypeName, mNoScope());

break;

case DeclExternal\: Tree = mProc(

NoTree, func_head:FuncName, func_head:FuncPos, FuncExtern

, func_head:Formals, func_head:TypeName, mNoScope());

break;

}

};

}.

func_head = /* func_heading ';'. */

{ FuncName := func_heading:FuncName;

FuncPos := func_heading:FuncPos;

Formals := func_heading:Formals;

TypeName := func_heading:TypeName;

}.

func_heading = /* 'FUNCTION' IDENTIFIER function_form . */

{ FuncName := IDENTIFIER:id;

FuncPos := IDENTIFIER:Position;

Formals := function_form:Formals;

TypeName := function_form:TypeName;

}.

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 16

function_form1 = /* EMPTY . */

{ Formals := mNoFormal();

TypeName := mNoPrimType();

}.

function_form2 = /* formal_params ':' IDENTIFIER . */

{ Formals := formal_params:Tree;

TypeName := mTypeId(IDENTIFIER:id,IDENTIFIER:Position);

}.

body1 = /* block . */

{ DeclType := DeclActual;

Tree := block:Tree;

}.

body2 = /* 'FORWARD'. */

{ DeclType := DeclForward;

Tree := mNoStat();

}.

body3 = /* 'EXTERNAL'. */

{ DeclType := DeclExternal;

Tree := mNoStat();

}.

3.3.3 Character or string constant

The scanner/parser combination determines every item in '' '' to be a string. Pascal however

di�erentiates between character and string constants. Although this distinction should/could

be made in the scanner, it is currently done at the instance where a AST-node is generated.

Modi�cation requires revision of all elements, which is too much e�ort at the moment.

Note that it will have little or no e�ect on the resulting AST. This is due to the fact that

attempts are made to keep the compiler phases as independent as possible.

3.3.4 Appending to already existing lists

In most rules the creation of the tree in nothing more than the creation of a node to which a

possible already created subtree is added. Then when the whole list/tree is ready, the nodes

are reversed in the list to cancel the bottom-up, right-most strategy. (Using ReverseTree)

This bottom-up ordering places the textual last element as �rst element in the list. And

although this is not necessarily incorrect, it does not repesent the actual order of speci�ca-

tion. It also complicates matters during the processing of declarations, where this order is

signi�cant.

On several occasions two lists have to be joined, meaning that one list is appended to the

end of the other. This requires the traversal of one list until the end is found, where then the

second list is appended. Since only synthesized attributes are available during the generation

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 17

of the AST, there are two possibilities.

1. Create a synthesized attribute which contains the last node of a list to which the second

list needs to be appended.

This requires careful examination of the elements of the list, since the this last element

is not the list terminator, but the last node required is the parent of this terminal node.

Construction of the joined list is very simple, since the extra attribute gives the node

to which the second list should be appended.

2. Additional code is added to the rule, which traverses list one to �nd the last used node,

to which then the second list is appended. This solution leaves all rules untouched,

except the rule which performs the join.

The second solution is used, since it leaves most code parts of the rules unchanged. And

it is the intention to use a easily coded Puma routine, instead of in-lined "C"-code.

3.3.5 Other attributes used.

Other attributes used are:

� [DirUp :Boolean] to indicate the next step direction in FOR-statements.

� [Operator] to pass on the type of the operator.

The values of the operators are de�ned in a global module. (globals.h). The actual

value is of little importance at the moment, but it holds the numerical value of the

operator string. This is allowed in "C", as long a a standard integer can hold these

characters. This limits it to a maximum of 4 characters, but allows easy printing of the

operator.

Note that if cases need to be build with operator, it is more sensible to select a simple

enumerate.

� [Position :tPosition] used during semantic evaluation. This gives position infor-

mation while reporting the error.

The scanner only puts position information in the items it returns to the parser. Now if

these need to be used in other rules, these positions need to be copied to extra attributes

in these rules.

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

Chapter 4

Semantic evaluation

Semantic rules specify "the meaning" of any syntactically valid program written in Pascal.

Although syntax has a large inuence on the appearance of a language, the semantics gives

meaning to the sentences of the language.

In this chapter will describe the elements which will allow the frontend to check that the

semantics of a program are correct. This is done by means of attribute evaluation.

First the functioning is of attribute evaluation is discussed in more detail. Then another

global structure is introduced: The symbol table. After which elements of the semantic

evaluation are discussed in more detail. For the simplest cases is code include, since it gives

the reader a better understanding of the attribute evaluation mechanism. More complex case

are not included since it would then required a detailed explanation of the code. Instead will

the text try to explain the functionality of the actions in these cases.

4.1 Attribute evaluation

For every node type an arbitrary number of attributes of arbitrary types can be declared using

the ASTs notation. These attributes have properties input, output, synthesized, inherited,

threaded and virtual.

Input attributes receive a value at node-creation time, whereas others receive their values

at later times. Output attributes are supposed to hold a value at the end of the node's

existence, where others may become unde�ned. Synthesized and inherited describe the kinds

of attributes occurring in attribute grammars, and indicate the direction of data-ow through

the AST.

The values of the attributes are now computed by visiting the elements of the tree in a

certain order and at some points during the visits a value is calculated using the contents of

already calculated attributes. The calculation of the visit sequence is again a chore done by

a tool.

For every node type, attribute computations (ACs) or actions are speci�ed. ACs are

written in the desired target language, using expressions, statements, and/or calls to external

functions of separately compiled abstract data types. However, ACs have to be functional in

order to allow AG to calculate the derivation of dependencies among the attributes and to

determine the appropriate evaluation order. And a large part of the remainder of this chapter

shall be devoted to describing the used attributes.

18

document : pascal.tex, Version: 1.1, state: Draft 19

The full description of the attribute evaluation mechanism of Cocktailis available in [6].

In [12], a large portion of the text is dedicated to working with attributes.

4.1.1 A simple example of an attribute

The attribute [Level :int INHERIT] is used to count the number of scope nestings. Every

time a new scope is entered [Level :int] is incremented. The code for this is amazingly

short:

MODULE Levels

/* Keep the number of nested levels.

/* The Levels are thus that after every procedure identifier

/* the Lex-Level is incremented. Thus all arguments are placed

/* into the new environment.

*/

DECLARE

Scopes

Decls Formals

Type

Statmts Cases

FormalTypes

Fields TagField

Variants

= [Level :int INHERITED].

PROG = { /* PROG = Decls Scope. */

Scope:Level := 1;

}.

Scope = { /* Scope = Decls Statmts.

/* Calculate level as first for everything.

*/

Decls:Level :- Level;

Statmts:Level :- Level;

}.

Proc = { Formals:Level := Level+1;

ResultType:Level :- Level;

Scopes:Level :- Formals:Level;

}.

Record = { Fields:Level := Level+1;

}.

First are all nodes enumerated which require this attribute. And if the node has child

nodes, then the child nodes also inherit the attribute.

The PROG scope is de�ned to be level 1. This level gets incremented at every instance of a

routine and record. Note that in routines the return type is determined to be in the outer

scope. And in routines the scope is the smae for the declarations and the statements.

The code, generated by the attribute evaluator, only calculates a new [Level] for a scope

after the value of the outer scope is calculated.

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 20

Due to the INHERIT type of the attribute, the value is copied unchanged on to the other

nodes in the AST. (At least when they are declared to have this attribute.) This does not

require any additional user programming.

4.1.2 What is the order of evaluation?

The nodes in the AST can be associated with attributes and attribute computations. It is

up to the generator tools to decide what the dependencies between all the attributes and

computations is. It is very simple to create loops in the computations, where attribute [A]

depends on attribute [B], and vice versa. These instances are reported by the tools. The

user has very little inuence in this other than to modify attribute calculations, or introduce

extra attributes

1

.

If relations become more complex, then dependencies are not always obvious. Users of AG

should invest time to read [6] carefully and experiment with the interactive dialog system. It

also has the possibility to look at the inserted default attribute computations.

It is also possible to trace the order of evaluation, but this produces a large volume of

text. And it might require a little \hacking" in the print routines use in the AGgenerated

code.

4.2 Symbol table and type management

A compiler uses a symbol table keeps track of scope and binding information about names.

Changes to the table occur if a new name of new information about a name is discovered.

Information is entered into the symbol table at various times. Standard available items are

inserted initially.

Although the term "symbol table" is used, is it not implemented as a table but as a

tree. And where it speaks of symbols, it should actually speak about declarations. For

the management of names is done by a module, supplied by the Cocktail-tools. The tree

consists of nodes describing the scoping of levels and each of the scoping levels has a list of

declared objects. These objects have subtrees associated with them to describe elements of

the object. Eg. a variable has a type-tree connected, a function has a parameter-list and a

return type, a record has �xed �elds, and possible variant �elds.

The whole de�nition of this structure is captured in the small tree grammar which is

included below.

Objects = <

ONoObject = .

Object = ONext: Objects <

OLabel = [LabelNum :int].

OVField = Objects -> [Vindex :tIntSet] .

ONamedObj = [Name :tIdent] [Pos :tPosition] <

OProg = StdObjs:Objects MyObjs:Objects

OConst = -> TType [Val :tValue] .

OEnum = [EnumVal :int] -> TType.

OField = TType .

1

It is possible to specify extra relations with BEFORE or AFTER, but these only work in limited cases.

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

document : pascal.tex, Version: 1.1, state: Draft 21

OTypeDecl = -> TType .

OVar = TType .

OStdProc = [StdProcKey :tStdProcKey] TType.

OProc = [ProcType :tProcType] ->

ParTypes TType

ScopeObjs:Objects EnvObjs:Objects

MyObjs:Objects.

>.

>.

>.

TType = <

TNoType = .

TInteger = .

TReal = .

TBoolean = .

TChar = .

TString = [Size :int].

TText = .

TNIL = .

TEmptySet = .

TProcStdType = [StdProcKey :tStdProcKey]

[Parno :int] .

TProcTransfer = [StdProcKey :tStdProcKey].

Constructor = TypeObj: Objects <

TEnum = -> [MaxEnum :int] Objects.

TSubrange = -> TType [Lwb :int] [Uwb :int] .

TArray = -> IndexType: TType ElementType:TType.

TRecord = -> Objects.

TSet = -> TType.

TFile = -> TType.

TPointer = [ForwardDecl :Boolean] -> TType.

>.

>.

ParTypes = <

NoParType = .

ParType = Next: ParTypes [IsVAR :Boolean]

TType [Ident :tIdent] .

>.

Env = Objects Hidden: Env .

Using this (small) grammar, it is possible to capture the whole state of the "symbol table"

during semantic analysis. Possibly, other attributes are required during the allocation and

code generation, but these are not included here.

Willem Jan Withagen (wjw@eb.ele.tue.nl) Datum:February 24, 1993

